Master-Studiengang Robotics Engineering
FH Technikum Wien, Héchstadtplatz 6, A-1200 Wien

BN Applied Sciences

TECHNIKUM
WIEN

y ‘? University of

VIRTUALIZATION OF A REAL-TIME OPERATING SYSTEM FOR ROBOT CONTROL
WITH A Focus ON REAL-TIME COMPLIANCE

Student:
Supervisor:

Abstract: This thesis investigates the virtualization of a
real-time operating system, which is built with Yocto, em-
ploys hard real-time through Xenomai 3, and is emulated
using QEMU/KVM. The primary objective was to bridge
the latency gap between virtualized and bare metal versions
to ensure deterministic and reliable behavior, which is de-
cisive for real-time robotics. Initial latency measurements
showed a high gap between bare metal and virtualized se-
tups. FExtensive tunings across BIOS, kernel, host OS,
QEMU/KVM, and guest OS were performed, which re-
duced the worst-case latency from 707.622 us to 17.134 s,
close to the bare metal performance of 10.709 us. The im-
provement was validated using a robotic application, com-
paring the tuned virtualization with the untuned and bare
metal versions.

Keywords: Virtualization, Real-Time Systems, Latency
Reduction, Robot Control

1. INTRODUCTION

In today’s industrial production and automation,
robots must react to their environment and perform
time-critical tasks within strict time constraints. De-
lays or errors can have catastrophic consequences.
In a traditional General-Purpose Operating System
(GPOS), a high-priority task cannot interrupt a ker-
nel operation, which makes them unsuitable for real-
time requirements, as they cannot guarantee deter-
ministic execution times. However, in a Real-Time
Operating System (RTOS), a high-priority process
can interrupt a lower-priority one, even if it is in the
middle of a kernel operation. Virtualizing real-time
operating systems for robotic control offers many ad-
vantages over traditional hardware-based approaches,
especially when it comes to scaling [1], flexibility, and
costs [2]. However, virtualization also introduces over-
head and latency [3]| [4]. In this master’s thesis, the
goal was the virtualization of an RTOS, namely Sala-
mander 4, to control a robot, with a focus on com-
pliance with real-time determinism. Specifically, the
aim was to bring the latency of the virtualized Sala-
mander 4 closer to that of the bare metal version,
as initial latency measurements revealed a significant
latency gap between the bare metal and virtualized
setup.

2. METHODOLOGY

In order to address this gap and achieve determin-
ism, an extensive real-time performance tuning pro-
cess was carried out. These tunings were added se-

Pamuk, Halil Ibrahim, BSc., PK:
Rauh, Sebastian, MSc. BEng.

51842568

quentially and tested together. This involves configu-
rations spanning the BIOS, kernel, host operating sys-
tem (OS), and QEMU/KVM virtualization layer, as
demonstrated in [5]. Xenomai provided real-time ca-
pabilities for the guest OS and therefore, no additional
modifications were necessary. Ubuntu 22.04.4 LTS
served as the host operating system, while Salaman-
der 4, built with Yocto and based on Linux 5.15.94,
was the guest OS. The latency tool of the Xenomai
tool suite was used to measure the scheduling latency
of the real-time OS. QEMU with KVM was employed
for virtualization. Trace-cmd and Kernelshark were
used for kernel tracing and visualization of trace data.
The testing robot was connected to the virtual CPU
via a VARAN bus interface.

3. PRACTICAL IMPLEMENTATION

The initial latency values were first measured with
the latency program of the Xenomai tool suite. The
tests were conducted for 10 minutes with a sampling
period of 100 ps, using a periodic user-mode task,
and were assigned a priority of 99. If any sample’s
latency value was greater than 100 ps, this was con-
sidered an overrun. There was a significant initial
gap in latency between the bare metal and virtual-
ized Salamander 4. To address this gap, an extensive
tuning process was carried out to achieve real-time
performance and determinism. These modifications
were added sequentially and tested together. Previ-
ous tunings were not reverted when moving to the
next tunings. First, the BIOS was configured, fol-
lowed by the kernel. The BIOS settings were not
reverted when moving to the kernel configurations.
Next, the host was configured, but the BIOS and
kernel settings remained unchanged. The guest con-
figurations were not changed since Xenomai already
provides real-time capabilities. Finally, QEMU/KVM
settings were applied. A robotic application further
confirmed the improvements. The difference between
the command time and the time the signal reaches the
Pulse Width Modulation (PWM) Module was mea-
sured 1,000 times to get reliable results for the bare
metal, untuned, and tuned versions of Salamander 4.

4. REsuULTS

This section summarizes the results after the
real-time performance tunings, both in terms of the
latency program and the robotic application.



Figure 1 displays the change in latency after each
real-time performance tuning of Salamander 4.

Salamander 4 Bare Metal

Untuned Salamander 4 Virtualization
After BIOS Configurations

After Kernel Configurations

108 |- After Host Configurations
After QEMU Configurations

100 |

Samples

103 |

102

1 10 100 200 400 800
Time in ps

Figure 1: Comparison of Latency Distribution of Salamander
4 after Configurations

Table 1 gives an overview of the most important
metrics of the measurements after each tuning.

Table 1: Comparison of Latency Statistics in Salamander 4 af-
ter Configurations

. Latency (ps)

Version Min Avg Max Overruns
Bare Metal 0.613 | 1.380 10.709 0
Untuned 2.536 | 8.940 | 707.622 43

Virtualization
After BIQS 0.969 | 3.948 | 457.545 22
Configurations
After Ker{rlel 2.545 | 4.811 | 21.694 0
Configurations
After Hqst 2591 | 4.834 | 18.441 0
Configurations
After QEMU 1o o) | 4779 | 17.134 0
Configurations

The improved latency was also tested with a
robotic application. The difference between the com-
mand issuance time and the time the signal reaches
the PWM module was measured 1,000 times for the
bare metal, untuned, and tuned versions of Salaman-
der 4. The results are visualized in Table 2.

Table 2: Comparison of Robotic Application Latency of Sala-
mander 4 Configurations

Version Latency (ms) Std Dev
Min Avg Max (ms)
Bare Metal 1.211 1.347 1.49 0.082
 Untuned 31 | 24.603 | 129.46 | 13.876
Virtualization
Tuned .
Virtualization 1.219 2.62 3.988 0.812

5. DISCUSSION

The results show that the real-time performance
tunings applied to the virtualized Salamander 4 OS
reduced latency and improved determinism. The
maximum latency decreased from 707.622 us to
17.134 ps after tuning BIOS, kernel, host, and

QEMU/KVM configurations. Especially, applying
the PREEMPT-RT patch, along with optimizing both
the BIOS and kernel configurations, played a crucial
role in reducing the maximum latency to 21.694 ps.
This also eliminated overruns going forward. The host
configurations, including CPU and interrupt affin-
ity, and real-time prioritization of QEMU, further
reduced latency down to 18.441 ps. The guest OS
already had real-time capabilities through Xenomai,
hence the focus was primarily on optimizing the host
and virtualization layer to achieve the desired real-
time performance. Finally, QEMU/KVM configura-
tions, such as tuning the LAPIC timer advance and
using hugepages, brought the latency down to the fi-
nal worst latency value of 17.134 ps. This value is very
close to the bare metal value of 10.709 ps. The goal
was set to achieving latency values below 50 ps in the
duration of the measurement. This goal was achieved.
A robotic application in a practical scenario validated
the improvement of the tuned virtualization compared
to the unmodified version. The difference between
the command time and the time the signal reaches
the PWM module was measured 1,000 times for the
bare metal, untuned, and tuned versions of Salaman-
der 4. The worst latency in the virtualization dropped
from 129 ms to 3.988 ms in the developed application.
Compared to the bare metal version’s worst latency
of 1.49 ms, the tuned virtualization came very close
to the determinism and reliability of the bare metal.

6. SUMMARY AND OUTLOOK

This master’s thesis aimed to virtualize an RTOS
for robot control, focusing on real-time determinism.
The goal was to reduce latency in the virtualized Sala-
mander 4 to match its bare metal version. Initial tests
showed a significant latency gap between bare metal
and virtualized versions. Extensive tuning was per-
formed sequentially, including BIOS, kernel, host, and
QEMU/KVM configurations. This process reduced
the worst latency from 707.62 ps to 17.134 s, close
to the bare metal value of 10.709 ps, achieving the
goal of sub-50 ps latency. A robotic application con-
firmed these improvements. Measuring the time be-
tween command issuance and command arrival at the
PWM module 1,000 times showed worst latency drop-
ping from 129 ms to 3.988 ms, approaching the bare
metal version’s 1.49 ms. Future work could include
additional configurations and optimizations of the vir-
tualization layer, investigating other hypervisors and
virtualization technologies, and extensive testing un-
der various workloads and stressed situations.

REFERENCES
[1] Maryam Abbasi et al. “Exploring OpenStack for Scalable and
Cost-Effective Virtualization in Education”.

2]  Gilberto Taccari et al. “Embedded Real-Time Virtualization:
State of the Art and Research Challenges”.

[3] Daniel Casini et al. “Latency Analysis of I/O Virtualization
Techniques in Hypervisor-Based Real-Time Systems”.

[4] Binbin Zhang et al. “Evaluating and Optimizing I/O Virtu-
alization in Kernel-based Virtual Machine (KVM)”.

[5] Intel. “Real-Time Performance Tuning Best Practice Guide-
lines for KVM-Based Virtual Machines”.



